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ABSTRACT: We present a novel, conceptually simple
approach to calculate the configurational entropy difference
between two conformational ensembles of a molecular system.
The method estimates the full-dimensional probability density
function of the system by a Gaussian mixture, using an efficient
greedy learning algorithm with a cross-validation-based
stopping criterion. An evaluation of the method on conforma-
tional ensembles corresponding to substates of five small
peptide systems shows that excellent agreement is found with
the exact entropy differences obtained from a full enumeration
of conformations. Compared with the quasiharmonic method
and two other, more recently developed methods, the
Gaussian mixture method yields more accurate results at smaller sample sizes. We illustrate the power of the method by
calculating the backbone torsion angle entropy difference between disulfide-bonded and nondisulfide-bonded states of
tachyplesin, a 17-residue antimicrobial peptide, and between two substates in the native ensemble of the 58-residue bovine
pancreatic trypsin inhibitor.

■ INTRODUCTION
Entropy and free energy are fundamental thermodynamic
quantities that play an essential role in determining the
macroscopic behavior of peptides, proteins, and other
biomolecular systems. Spontaneous processes at constant
temperature (and pressure) tend to reduce the free energy of
the system. The behavior of entropy during the process
provides insight into the mechanism and the main forces
driving the changes at the molecular level. A main driving force
of protein folding, for example, is the hydrophobic interaction,
partly driven by an increase in the entropy of water.1 To
calculate entropies from theoretical models and molecular
simulations is an important challenge.
However, theoretical efforts in the past decades have mostly

been devoted to calculating free energies rather than entropies.2

The most popular methods to calculate free energy changes are
thermodynamic integration and the related free energy
perturbation and histogram analysis methods. These methods
work best when the free energy difference between two similar
states of a biomolecular system is to be calculated. A large
structural difference between the two states makes the
calculation increasingly difficult, and sometimes requires
simulations that are unfeasible. A promising solution to this
problem is to calculate the absolute free energies of the two
states and simply take their difference, thus entirely avoiding
the need to find or set up an integration or transition path
between the two states. For a solvated system, the internal
energy may be calculated using a molecular mechanics force
field, and the solvation free energy may be derived from implicit
solvent models, such as in the popular MM/PBSA approach.3

To obtain the total free energy, however, the conformational
entropy of the solute must also be estimated, requiring
integration over the configurational space. This is typically
neglected in the MM/PBSA method. Consequently, there is a
need for methods that can efficiently calculate configurational
entropies from conformational ensembles obtained from
experiments or generated by molecular dynamics (MD) or
Monte Carlo (MC) simulations.
Calculating entropies is a challenging problem because, in

principle, the whole configurational space has to be evaluated. A
wide range of methods for calculating entropies from
conformational ensembles have been developed over the past
decades; we direct the reader to in-depth reviews of the
subject.2,4 The available methods differ from each other in
several aspects: whether they calculate quantum mechanical or
classical entropies; the type of coordinates they use; how they
deal with the problem of dimensionality; and how they estimate
probability densities.
Many methods aim to calculate classical entropy, typically on

internal coordinates or only torsion angles.5−19 These entropies
are relative because in classical mechanics, entropy is
undetermined up to an arbitrary additive constant depending
on the chosen phase space cell volume; this is not a problem as
the laws of thermodynamics are only concerned with changes
in entropy. Another group of methods calculates quantum
mechanical entropy, typically from Cartesian coordinates.20−25

The quantum mechanical entropy is considered absolute
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because the phase space cell volume is tied with Planck’s
constant to account for the uncertainty principle. Several
methods combine the two approaches by treating the fast
degrees of freedom quantum mechanically and the slow degrees
of freedom classically.26−28

With systems larger than a small molecule with a few degrees
of freedom, the high number of dimensions of the configura-
tional space introduces a computational challenge. Only a few
methods aim to calculate a full-dimensional entropy, and they
are still limited to a few dozen dimensions.14,27 Some methods
simply neglect correlations between coordinates and calculate
the entropy as a sum of one-dimensional entropies.7,8,16,29,30

More commonly, principal component analysis is applied to
obtain linearly independent degrees of freedom,5,6,9,12 or
vibrational modes are determined and treated as independ-
ent.20−25 A number of methods employ mutual information
expansion (MIE) to approximate the full-dimensional entropy
using marginal distributions (usually up to two-dimensional
marginals).13,15,26,28,31,32 Other solutions include clustering the
coordinates into minimally coupled subspaces (MCSA) by full
correlation analysis (FCA),27,28 and methods based on series
expansions such as maximum information spanning tree
(MIST)33 and multibody local approximation (MLA).18,19

Entropy calculation involves estimating the probability
distribution of the system in phase space, or (in the case of
configurational entropy) in configurational space. Several
methods discretize the data into bins and calculate the entropy
from the resulting histogram,7,8,13,17−19,31,33 although this is
only practical for a small number of dimensions. To estimate
the probability density beyond histograms, various parametric
and nonparametric methods have been used. The classical
quasiharmonic method5 is parametric; it approximates the
probability distribution as a single multidimensional Gaussian;
this can be improved by a cubic correction.9 Equivalently, the
quantum quasiharmonic method approximates the system as a
set of harmonic oscillators.20−25 While the quasiharmonic
method is easy and fast to calculate, it has obvious limitations as
it assumes that the system has a single harmonic energy well;
even simple molecules have a significantly more complex
energy landscape. The inaccuracy of the quasiharmonic method
has been demonstrated in multiple studies.4,34,35 Thus, a
number of methods have been developed to obtain more
accurate probability densities and entropies. One solution
involves decomposing entropy into vibrational and conforma-
tional contributions;36,37 this leads to an approximation of the
energy landscape by a number of distinct local energy minima
(corresponding to distinct conformations), each of which is
approximated by the quasiharmonic approximation.20,35 An-
other group of methods uses the quasiharmonic approximation
with correction terms for anharmonicity and supralinear
correlations.26,38 An approach based on Fourier expansions is
also parametric.10,11 Nonparametric density estimation meth-
ods include the k-nearest-neighbor approximation,14,15,26 and
kernel density estimation based on von Mises kernels,16,29,30

Gaussian kernels,12 and adaptive anisotropic kernels.27,28 A
completely different approach is used by Meirovitch and co-
workers,39,40 who use a complex reconstruction algorithm to
establish the probability of each configuration.
As expected, the currently existing methods still have

limitations, for example, many of them use low-dimensional
approximations to the full-dimensional entropy, or have a high
computational burden. Here, we report a novel method to
calculate the (classical) configurational entropy of a system

from a conformational ensemble. As a natural extension of the
quasiharmonic method, our method uses a Gaussian mixture
model to estimate the full-dimensional probability density
function of the molecular system. Gaussian mixture functions
are weighted sums of individual multivariate Gaussians, and can
approximate any smooth function to arbitrary accuracy.
Gaussian mixtures can be efficiently estimated by a greedy
expectation maximization method,41 and the entropy can be
easily calculated. This offers us a conceptually simple way to
calculate the configurational entropy of molecular systems
having an arbitrarily complex energy landscape. We have tested
the accuracy of the method on five small peptides and found
that it provides more accurate results at smaller sample sizes
than several existing methods. The method scales well to larger
molecules; we demonstrate this by using it to calculate full-
dimensional entropies for a 17-residue peptide and a 58-residue
protein.

■ THEORY
In a classical system with M degrees of freedom, the entropy is
defined as5,7

∫= −S k P P hp q p q p q( , ) ln( ( , ) ) d dM
B

where kB is Boltzmann’s constant (to be replaced by the ideal
gas constant R when calculating molar entropies), P(p, q) is the
probability density in phase space with p and q representing
momentum and position variables, respectively, and hM is the
cell volume in phase space, with h often chosen to be Planck’s
constant to reproduce quantum mechanical entropies. As noted
in the Introduction, classical entropy is undetermined up to an
arbitrary additive constant, therefore hM in the above formula
can be omitted. In a conservative system, the probability
density in Cartesian phase space factorizes into a kinetic and a
configurational part, and the entropy becomes

= +S S Sp c

where Sp and Sc are the kinetic and the configurational entropy,
respectively. The latter one is

∫= −S k P Px x x( ) ln ( ) dc B

where P(x) is the probability density in the space of Cartesian
coordinates x. It should be noted that while the total entropy S
is unit-independent, both Sp and Sc depend on the length unit,
but this does not pose any problems because changing the unit
only adds an additive constant to the calculated entropies,
which cancels out when calculating entropy differences.
For nondiffusive systems where overall translation and

rotation can be ignored, it is often advantageous to switch to
internal coordinates q (typically bond lengths, bond angles, and
torsions), which introduces the Jacobian J(q) so that dx =
J(q) dq, and the configurational entropy becomes

∫ ∫= − ′ ′ − ′S k P P k P Jq q q q q q( ) ln ( ) d ( ) ln ( ) dc B B

where P′(q) is the probability density in internal coordinate
space. Internal coordinates are often divided into “hard” ones
(qhard) that only vary in very narrow ranges (typically bond
lengths and bond angles) and “soft” ones (qsoft) that vary
widely (typically torsions). It has been shown42 that the
Jacobian J(q) only depends on the bond lengths and bond
angles, and is independent of the torsions, that is, J(q) =
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J(qhard). Assuming that the “hard” variables can be replaced by
their equilibrium values (an approximation which may not
always be satisfactory5,7,42 but is routinely used), the probability
density also factorizes into P′(q) = P′(qhard)P′(qsoft), and after
performing the integration over the hard coordinates, the
configurational entropy becomes

∫= − ′ ′ +S k P Pq q q( ) ln ( ) d constc B soft soft soft

where the additive constant can be omitted. Again, the entropy
calculated this way is dependent on the angle unit (qsoft
representing torsion angles), but only via another additive
constant, therefore entropy differences will be unit-independ-
ent. Note that the above treatment assumes “hard” but still
flexible bond lengths and bond angles; assuming completely
rigid bonds and bond angles results in a more complex formula
containing the mass-metric tensor.42 With the approach
presented above, calculating the classical configurational
entropy from an ensemble of conformations involves estimating
the probability density in the space of torsion angles and
computing the integral shown. This basic approach has been
used, in many variations, in a number of entropy calculation
methods.5−19,29,30,33

In this paper, we use the terms “configurational entropy” and
“conformational entropy” interchangeably because the con-
formations of a flexible molecule are its configurations in a
statistical mechanics sense. We treat conformational space as a
continuous space, unlike approaches for which configurational
space is viewed as a set of discrete conformations with
harmonic vibrations around them.20,35,36

■ METHODS
Peptide Test Systems. Five small peptides were used to

test the accuracy of our entropy calculation method. The initial
atomic models of peptide molecules were generated with
SYBYL 7.3. The geometry was optimized by energy
minimization with the G53a6 force field using the L-BFGS
method in GROMACS 4.543 with all nonbonding interactions
turned off. This was done in order to optimize bond lengths
and angles for the G53a6 united atom force field, which was
used for all subsequent energy evaluations.
The selected molecules were Ala3, Ala−Val−Ala, Ace−Ile−

Nme, Ace−Val−Nme, Val2, and the resulting ensembles were
named “ala3”, “ala-val-ala”, “ile”, “val” and “val2”, respectively.
Amino and carboxyl termini, if present, were left uncharged.
Generation of the Full Set of Conformations for the

Peptide Test Systems. To calculate the exact configurational
entropy, a set of conformations was generated for each peptide
test system that uniformly samples the phase space of internal
coordinates. This was done by taking all conformations along a
lattice φ = (k1φ0, k2φ0, ..., kdφ0) in internal coordinate space,
where ki are integers and φ0 is a fixed sampling interval. Only
values of ki were considered where kiφ0 lies in the [−180°,

180°) interval. The conformations were generated by rigid-
body rotation along the torsion angles representing the degrees
of freedom of the molecule. The value of φ0 was adjusted for
each system to yield ∼40−60 millions of conformations. The
parameters for each system are summarized in Table 1. The
potential energy according to the G53a6 force field was
associated with each conformation.

Calculation of Exact Entropies for the Peptide Test
Systems. The calculation of the exact configurational entropy
of the systems was carried out based on the classical statistical
physical definition of entropy. The configurational entropy is

β= + ⟨ ⟩S k Z E(ln )conf B conf conf

where β = 1/(kBT) is the temperature factor, Zconf is the
configuration integral, and ⟨Econf⟩ is the average potential
energy. These were approximated as sums based on the full set
of conformations generated for each molecule. The formulas
used were

∫ ∑ φ φ= ≈ =β βε− −Z Zqe d eU

k

d dq
conf

( )
0 disc 0

k

∫ ∑

∑

ε φ= ≈

= = ⟨ ⟩

β βε

βε

− −

−

E
Z

U
Z

Z
E

q q
1

( )e d
1

e

1
e e

U

k
k

d

k
k

q
conf

conf

( )

conf
0

disc
disc

k

k

where U(q) represents the potential energy as a function of the
torsion angles q, the summation runs over the discrete
conformations and εk is the potential energy of the kth
conformation, d is the number of dimensions, and Zdisc and Edisc
denote the discrete partition function and the discrete average
energy, respectively. From these, the discrete entropy is
obtained as

β φ= + ⟨ ⟩ +S k Z E k(ln ) d lndisc B disc disc B 0

Generation of Monte Carlo (MC) Ensembles for the
Peptide Test Systems. For the creation of canonical
ensembles for the peptide test systems, a Metropolis Monte
Carlo algorithm was implemented that samples the full set of
conformations at a fixed temperature of T = 300 K. After an
initial sampling, the configurational space of each system was
examined as scatterplots of the torsion angles, and was divided
into two subsets (denoted by A and B) for the purpose of
entropy difference calculations between the two subsets. The
definitions of subsets B are shown in Table 1; subsets A are the
complements of subsets B. The exact entropy of each subset
was calculated as described in the previous section. For each
subset, 100 000 conformations were generated by MC
sampling.
Because the points in the samples generated this way are on

lattice points, many of them coincide (i.e., they are repeated).
We found that the k-nearest neighbor method for entropy

Table 1. Details of the Test Systems

system degrees of freedom (list of torsions) lattice unit φ0 (degrees) number of conformations subset Ba

ala3 4 (ψ1, φ2, ψ2, φ3) 4 65 610 000 −120° ≤ ψ1 < 0°
ala-val-ala 5 (ψ1, φ2, χ, ψ2, φ3) 10 60 466 176 −120° ≤ χ < 120°
ile 4 (φ, ψ, χ1, χ2) 4 65 610 000 −120° ≤ ψ < 0°
val 3 (φ, ψ, χ) 1 46 656 000 −120° ≤ ψ < 120°
val2 4 (ψ1, φ2, χ1, χ2) 4 65 610 000 −120° ≤ ψ1 < 0°

aSubset A is the complement of subset B.
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estimation (which we used for comparisons with our method)
does not handle repeated points well; this is understandable as
the method uses the distance of a point from its kth nearest
neighbor, which is often zero when the points are repeated. To
eliminate the repeated sample points, we applied a random shift
to the points according to a uniform distribution with a
maximum absolute value of half the lattice unit along each
dimension. This “smearing” of the sample does not introduce
any distortions into the underlying probability density and
should conserve the entropy.
Generation of Molecular Dynamics (MD) Ensembles

for Tachyplesin. We used tachyplesin,44 a 17-residue
antimicrobial peptide to test our entropy calculation method.
This peptide is stabilized by two intramolecular disulfide bonds
between residues 712 and 316. Starting with the solution
structure (PDB ID: 1MA245), we generated two modified
molecules by cutting one (316) or both disulfide bridges.
MD simulations were run on the wild-type and the two
disulfide-cut molecules using GROMACS 5.043 in GBSA
implicit solvent46 with the stochastic dynamics integrator at
300 K with LINCS47 bond constraints and a 2 fs time step;
infinite cutoffs were used for the nonbonded interactions.
Thirty-two independent simulations of 50 ns were run for each
molecule for better sampling; the first 3 ns were considered
equilibration and discarded. A total of 125 344 conformations
were used for entropy estimations for each molecule.
Molecular Dynamics Samples for BPTI. Bovine pancre-

atic trypsin inhibitor (BPTI) is a 58-residue protein whose
native-state dynamics has been characterized in detail by a 1 ms
MD simulation.48 We have obtained this 1 ms trajectory
(courtesy of D. E. Shaw Research), and used every seventh
frame in the trajectory to obtain an ensemble of 589 281
conformations for our analyses. Subsets for entropy difference
calculations were defined as described in the Results section.
Implementation of Other Entropy Estimation Meth-

ods. To compare our method with other, published entropy
estimation methods, we implemented the following methods.
The classical quasiharmonic method5 consists of fitting a single
Gaussian onto the sample, and thus is identical with the first
step of our Gaussian mixture method. The k-nearest neighbor
(kNN) method is used in several published entropy estimation
methods,14,15,26 and it is based on estimating the probability
density at a point based on its distance from its kth nearest
neighbor. Here, k is an arbitrary parameter; we tested values
from 1 to 4 in accordance with literature recommendations.26

We implemented the nearest-neighbor search with k−d trees.49
Unlike some implementations in the literature,14,15 we did not
use any extrapolation technique with our kNN tests as this
would require a range of large sample sizes and we were
interested in how the methods handle smaller sample sizes. The
“2D entropy” method of Wang & Brüschweiler12 treats torsion
angles as complex numbers, performs principal component
analysis of the sample, and uses kernel density estimation to
estimate the probability densities along each principal axis,
followed by numerical integration to obtain the entropies; the
total entropy is obtained as the sum of entropies calculated for
the individual eigenmodes. Here, the bandwidth σ of the kernel
is a free parameter; we tested multiple values between 0.05 and
0.5 in accordance with literature recommendations.50 We also
tested low-dimensional approximations to the entropy based on
mutual information expansion (MIE).15

Measuring Correlations between Coordinates. Linear
associations between coordinates were measured by the

Pearson correlation coefficient r. For a more general measure
of association between coordinates qi and qj, we used the
mutual information defined as

= + −I q q S q S q S q q( , ) ( ) ( ) ( , )i j i j i j

where S(qi) and S(qj) denote the marginal entropies and S(qi,
qj) is the joint entropy of qi and qj. If the correlation coefficient
between qi and qj is zero (as is the case when the coordinates
have been transformed by principal component analysis) then
the mutual information describes the nonlinear or supralinear
association between the coordinates.26 To handle cases in
which the correlation coefficient r is nonzero (as when using
the original, nontransformed coordinates), we introduce the
quasiharmonic mutual information as

∑ σσ= −
=

I
1
2

log
1
2

log det( )
i

d

ii
(qh)

1

where σ is the covariance matrix of the coordinates as calculated
from a sample. I(qh) is the difference between the sum of one-
dimensional marginal quasiharmonic entropies and the full-
dimensional quasiharmonic entropy; thus it is the mutual
information taken into account by the quasiharmonic
approximation. It essentially captures the linear correlations
between the coordinates; a similar approach has been described
in the literature.51 The difference between the full mutual
information I (obtained by summing the pairwise mutual
information values) and the quasiharmonic mutual information
I(qh) is thus a measure of supralinear correlations in the system.
When used as contributions to thermodynamic entropies, the
mutual information values are multiplied by the gas constant R.

■ RESULTS
Entropy Estimation by Gaussian Mixtures. Any

continuous multivariate probability density can be arbitrarily
closely approximated by a Gaussian mixture function of the
form

∑ μ σ=
=

p wNq q( ) ( ; , )k
i

k

i i i
1

where the vector q represents the variables (in our case, torsion
angles), k is the number of Gaussian components, wi is the
weight of the ith component, and N(q; μi, σi) is the multivariate
normal distribution with mean μi and covariance matrix σi.
Given a sample of n input points Q = (q1, ..., qn), in our case an
ensemble of n molecular conformations described by sets of
torsion angles, the underlying probability density can be
estimated as a Gaussian mixture, which involves estimating the
number of components, the weights, and the means and
covariance matrices. This is a computationally highly intensive
task if all the parameters (including the number of
components) are estimated simultaneously as the parameter
space to be searched is high-dimensional. Therefore, we use the
greedy learning method developed by Verbeek et al.,41 which
first fits a single Gaussian onto the sample, and then adds new
components one by one, choosing the new component in each
step from a number of locally optimal candidate components
and then applies expectation-maximization (EM) to the
resulting mixture. The number of candidate components tested
in each step and the convergence threshold for the EM step are
free parameters that can be set by the user; we set them to 30
and 10−5, respectively, but we found that the results were rather
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insensitive to these settings. New components are added until a
predefined stopping criterion is met (see next subsection). To
implement the algorithm, we adapted the Matlab code
downloaded from http://lear.inrialpes.fr/~verbeek/software to
Python/NumPy, with some modifications.
Once we obtain the estimated Gaussian mixture pk, the

entropy could be obtained by integration according to the
Shannon formula. However, this extra calculation is not
necessary. As the greedy expectation-maximization algorithm
outputs the maximized log-likelihood

∑= =
=

L L p pQ q( , ) log ( )k
i

n

k i
1

the estimated information entropy of the distribution is simply
obtained as the negative average log-likelihood

= −H L n/

which is a consequence of the weak law of large numbers, that
is, the fact that the sample average of a quantity converges to its
expected value; entropy is by definition the negative of the
expected value of the logarithm of the probability density. To
obtain the molar entropy, we multiply the information entropy
by the universal gas constant R:

=S RH

Stopping Criterion. The greedy expectation-maximization
algorithm as described by Verbeek et al.41 does not specify a
particular criterion determining when we should stop adding
new components to the Gaussian mixture. We tested a number
of stopping criteria including a simple threshold for the
decrease in entropy upon adding a new component, the
Bayesian Information Criterion, and the Akaike Information
Criterion, but none of these criteria worked consistently across
sample sizes and dimensionalities. Therefore, we introduced a
cross validation based stopping criterion. Briefly, the input
sample Q is randomly divided into two equal parts, X (as the
training set) and Y (as the testing set), and the greedy learning
method is applied to X, yielding a k-component Gaussian
mixture pX,k. To decide whether to keep the kth component, we
calculate the log-likelihood of Y using pX,k:

∑=
∈

L p pY q( , ) log ( )k k iX
q Y

X, ,
i

and we stop the algorithm and discard the kth component
when the log-likelihood decreased relative to the previous step,
that is, if L(Y, pX,k) < L(Y, pX,k−1). Otherwise, the new
component is added and the algorithm is continued. We found
that this stopping criterion is rather robust and reliably prevents
both underfitting and overfitting with all sample sizes and
dimensionalities, and has the advantage that it does not require
any arbitrary parameters. When the algorithm has converged,
the entropy can be estimated from the log-likelihood on either
X or Y (or even the full sample Q), although the log-likelihood
on X is always higher, this difference usually disappears when
calculating entropy differences. In our tests with small peptide
systems (see later), we found that the entropy estimated from
the training set X still tends to slightly overestimate the exact
entropy, indicating that our method is unlikely to be affected by
the bias found in histogram-based methods,31 as it would result
in underestimated entropies.
As a consequence of the random division of the sample into

two parts, repeating the calculation several times usually gives

slightly different results as the sample is divided differently each
time. This variation decreases with increasing sample size. To
obtain more accurate entropy estimates, the calculation can be
repeated a number of times and the average of the results can
be taken; the standard error can also be calculated. When
calculating entropy differences, it is desirable that the two
samples are about the same size as this ensures similar accuracy
of their calculated entropies.

Scaling of the Input Data to Prevent Arithmetic Errors.
The formula for the individual Gaussian components contains
the determinant of the covariant matrix in the normalizing
factor, and this determinant scales exponentially with the
number of dimensions d. Therefore, with higher dimension-
alities, the normalizing factor can easily result in an arithmetic
overflow or underflow during the computation. To eliminate
this problem, before starting the greedy learning algorithm, we
fit a single Gaussian to the whole sample and check whether the
determinant D of the covariance matrix is larger than 1020 or is
smaller than 1. In either case, we scale the input data by the
scaling factor f = (1020/D)1/d. This will ensure that no
underflows or overflows occur during the greedy learning. At
the end of the calculation, the effect of the scaling is removed
by adding d log f to the obtained log-likelihood.

Distribution Centering. As torsion angles are circular
variables usually mapped to the −180° to 180° interval, fitting
a probability distribution to such samples may cause artifacts if
significant portions of the probability density fall near the
periodic boundary; for example, a peak near 180° gets split in
half and erroneously appears as two peaks. To alleviate these
problems, centering of the data was performed. This was done
by creating a histogram of values independently for each
torsion angle and finding the longest contiguous interval of
angles with minimum frequency. A transformation was then
applied to rotate the torsion angle values to move the periodic
boundary (180°) to the middle of the interval. This way, we
make sure that no peaks fall on the periodic boundary. This
procedure was repeated for each internal coordinate. The
procedure shifts possible peaks at the periodic boundary but
otherwise does not change the information entropy of the
distribution.

Accuracy of the Gaussian Mixture Entropy Estimation
Method. Peptide Test Systems. The accuracy of our entropy
estimation method was tested on five small peptide systems
with 3 to 5 rotatable torsion angles. The molecules are shown
in Figure 1, and the details of the systems are listed in Table 1.
To be able to calculate entropy differences, the configuration
space of each molecule was divided into two parts (subsets A
and B; see table for their definition) as described in the
Methods section.

Calculation of Exact Entropies. The configuration space of
each peptide was enumerated on a lattice in the space of torsion
angles. Each conformation was assigned a potential energy, and
the exact entropies for subsets A and B were calculated using
the partition function and the average energy (see Methods for
details).

Correlations between Coordinates. When selecting the
molecules for testing, we tried to ensure that there is a sufficient
amount of correlation between the degrees of freedom to pose
a challenge to the entropy estimation methods. Indeed, each
test peptide has one or more pairs of highly correlated torsion
angles: the correlation coefficients with the highest absolute
value are −0.60, −0.40, −0.62, −0.59, and −0.70 for the ala3,
ala-val-ala, ile, val, and val2 peptides, respectively. We also

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00837
J. Chem. Theory Comput. 2017, 13, 29−41

33

http://lear.inrialpes.fr/~verbeek/software
http://dx.doi.org/10.1021/acs.jctc.6b00837


calculated the total mutual information for each molecule from
the discrete marginal and joint probability distributions, as well
as the quasiharmonic mutual information (see Methods). We
find that correlations not captured by the quasiharmonic model
account for 26%, 63%, 54%, 53%, and 54% of the total mutual
information for the five molecules, respectively. Thus, the
degrees of freedom of our test systems have a considerable
amount of both linear and supralinear associations.
Monte Carlo (MC) Sampling. To obtain suitable samples for

testing the entropy estimation algorithms, the set of
conformations generated in the previous step was sampled by
MC sampling to generate 100 000 conformations for both
subsets A and B of each peptide.
Accuracy of Estimated Entropies. The Gaussian mixture

method and three other, widely used methods, namely the
classical quasiharmonic method,5 the k-nearest neighbor
method (kNN),14,15,26 and the “2D entropy” method12 were
used to calculate entropy differences between substates A and B
of each test peptide from the generated MC samples. Various
sample sizes were tested in order to compare how the results
depend on sample size. Table 2 shows the exact entropy
differences ΔSAB in comparison with the estimates obtained
with each algorithm at a sample size of 10 000 conformations,
and the average deviation from the exact entropy difference.
Because the entropy estimated by the Gaussian mixture method
can be different at each run due to the random selection of
subsets for the cross-validation stopping criterion, we
performed the calculation 20 times, and show the mean and
the standard deviation of the results. The Gaussian mixture
method has proven to be by far the most accurate, with an
average deviation of only 0.54 ± 0.33 J/K/mol from the exact

entropy difference. The quasiharmonic method is the least
accurate with a deviation of 7.42 J/K/mol, while the 2D
entropy and the kNN methods are about equally accurate with
a deviation of 1.41 and 2.73 J/K/mol, respectively. It should be
noted that we tested the kNN method with k values from 1 to
4, and the 2D entropy method with several values of the σ
parameter between 0.05 and 0.5; we obtained the most accurate
results with k = 4 and σ = 0.5; only these are shown in the table.
To see how each method performs at various sample sizes,

we performed the calculations with several sample sizes from
2500 to 100 000. The results are shown in Figure 2 for each
molecule, and the bottom right graph shows the averaged
accuracy over all five peptides. As expected, all methods are
inaccurate at very small sample sizes, and get more accurate as
sample size increases, although the quasiharmonic method
remains inaccurate even at large sample sizes. The accuracy of
the Gaussian mixture method increases significantly faster with
sample size than does the accuracy of the kNN method, and the
Gaussian mixture method is about as accurate at a sample size
of 5000 as the kNN method is at a sample size of 100 000. The
accuracy of the 2D entropy method is less dependent on the
sample size than the kNN method, but it is less accurate overall
than the Gaussian mixture method. Overall, the Gaussian
mixture method provides more accurate entropies at smaller
sample sizes than the other methods.

Application to Tachyplesin. MD Simulations. To probe
the behavior of our algorithm on more complex systems, we
applied it to larger molecules. Tachyplesin44 is a 17-residue
antimicrobial peptide whose structure is stabilized by two
disulfide bridges between residues 316 and 712. We used
our Gaussian mixture entropy estimation method to estimate
the entropic effect of cutting one (the 316) or both disulfide
bridges in this molecule. Large MD samples (32 parallel
simulations of 50 ns to obtain a total of 1600 ns simulation time
for each molecule) were generated as described in the Methods
section; we chose to perform many shorter simulations instead
of a single long one as this approach is known to provide better
sampling.52 Only the backbone torsion angles φ and ψ were
used in the entropy calculation; the degrees of freedom are thus
32.

Convergence of the Entropy during the Algorithm. Figure
3 shows the convergence of the entropies during the running of
the algorithm as a function of the number of Gaussian
components added, both for the native tachyplesin with two
disulfide bridges and the variant with no disulfide bridges. The
entropies calculated for the training set (denoted by X, see
subsection “Stopping Criterion”) and the testing set (denoted
by Y) are separately shown. The entropy SX calculated for the
testing set X is always a bit lower than that (SY) of the training

Figure 1. Molecular systems of small amino acids or derivatives
selected for ensemble generation. Selected molecules were Ala3
(“ala3”), Ala-Val-Ala (“ala-val-ala”), Ace-Ile-Nme (“ile”), Ace-Val-
Nme (“val”) and Val2 (“val2”). Termini were left uncharged. United
carbon atoms are displayed in gray, oxygen and nitrogen are black, and
hydrogen atoms are white. Rotatable bonds, which represent the
degrees of freedom, are indicated.

Table 2. Accuracy of Entropy Calculation Methods on Small Samplesa

molecule exact Gaussian mixture quasiharmonic nearest neighbor (k = 4) 2D entropy (σ = 0.5)

ala3 4.20 4.01 ± 0.27 3.82 3.45 1.17
ala-val-ala −5.00 −3.6 ± 0.56 −15.31 −0.86 −3.95
ile −1.30 −1.45 ± 0.26 5.32 −5.63 0.00
val −0.87 −0.75 ± 0.21 −11.22 0.63 −1.60
val2 1.10 1.92 ± 0.35 10.54 −1.81 2.00
average deviation 0 0.54 ± 0.33 7.42 2.73 1.41

aEntropy differences (in J/K/mol) between the substates of five molecules as defined in Table 1, calculated with various methods, from ensembles of
10 000 conformations. The last row shows the absolute deviation from the exact value averaged over the five molecules. Results with larger samples
are presented in Figure 2. For the Gaussian mixture method, the mean ± standard deviation is shown based on running the calculation 20 times.
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set Y; while SX keeps decreasing as more components are
added, SY stops decreasing at a certain number of components
(50 to 60 components in this case), and that is where the
algorithm is stopped. Figure 3 also shows the behavior of the
entropies when the algorithm is not stopped: the training set
entropy keeps decreasing while the testing set entropy
increases, indicating overfitting.
Convergence of the Entropy with Simulation Time.

Reliable estimation of the entropy requires adequate sampling;
thus, it is a good practice to observe how the estimated entropy
changes as the simulation progresses. As tachyplesin is a 17-

residue peptide, a full sampling of its entire configurational
space may require milliseconds, which is not feasible by
conventional MD simulations. However, by performing 32
parallel simulations starting from the same initial structure, we
can at least explore the vicinity of the starting structure and
obtain an adequate sample of it. Figure 4 shows the variation of

entropy with simulation time for tachyplesin with 2, 1, and 0
disulfide bridges. The first 3 ns of each simulation was
discarded; thus we used a maximum simulation time of 47 ns
for the calculations. The trajectories from the 32 independent
simulations were merged, and each entropy calculation was
performed 10 times to allow us to calculate the averages and

Figure 2. Entropy differences between the A and B substates of five molecules as defined in Table 1, calculated with various methods, plotted against
the sample size. The legend is shown in the top center plot. The exact entropy difference is indicated as a horizontal dotted line with an arrow at the
right side of each plot. The bottom right plot shows the absolute deviation from the exact value averaged over the five molecules. Error bars
represent the standard deviation of the results from the Gaussian mixture method.

Figure 3. Entropies calculated by Gaussian mixture fitting to backbone
torsion angle ensembles for tachyplesin with no disulfide bridges and
two disulfide bridges from both the training and testing ensemble
subsets, plotted against the number of components in the mixture.
Ensembles from the first 21 ns of the simulation were used (∼80 000
conformations per molecule). The calculation was continued beyond
the point (indicated by arrows with the “STOP” label) where the
stopping criterion was met to illustrate underfitting and overfitting
behavior. Figure 4. Entropies calculated by Gaussian mixture fitting to backbone

torsion angle ensembles from MD simulations of tachyplesin with 0, 1,
or 2 disulfide bridges as a function of simulation time. Ensembles were
generated by merging the trajectories from 32 parallel independent
simulations. Each data point is an average of 10 entropy calculations,
with the standard errors shown as error bars.
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the standard errors. As expected, there are large variations in
the entropy initially, which diminish as time progresses. After
∼30 ns, the entropies of the disulfide-bonded species appear
sufficiently converged, while there is still a slightly decreasing
trend in the entropy of the molecule without disulfide bridges.
This is understandable as the lack of disulfide bonds makes this
molecule very flexible and it explores a significantly larger
region in conformational space than the disulfide-bonded
species. For this reason, its estimated entropy should be
considered less reliable than that of the disulfide-bonded
species.
Calculated Entropy Differences. The greedy learning

method fitted 119 to 145, 96 to 121, and 93 to 106 Gaussian
components to the ensembles of backbone torsion angles
obtained from MD simulations of tachyplesin with 0, 1, and 2
disulfide bonds, respectively. The higher number of compo-
nents needed to fit the ensembles of the 0-disulfide species
indicates the significantly larger complexity of its energy
landscape. Figure 5 shows scatterplots of the ensembles for

the species with 2 disulfides and no disulfides, projected onto
the plane of the first two principal components, and the fitted
Gaussian mixtures are represented as contour lines. The graphs
show that the probability density has narrower peaks in the
disulfide-bonded state than without disulfide bridges. The
entropy differences obtained from the calculations are S2 − S0 =
−22.2 ± 0.7 J/K/mol, S1 − S0 = −11.2 ± 0.8 J/K/mol, and S2
− S1 = −11.0 ± 0.7 J/K/mol where Sm denotes the entropy of
the species with m disulfide bridges. We can compare the S1 −
S0 value with that calculated with the formula ΔS = −8.7822 −
1.5R ln n from polymer theory53 for the entropy reduction of a
random coil due to introducing a cross-link with n residues
between the linked residues. From this theoretical formula, S1 −
S0 should be about −26 J/K/mol. Considering the fact that the
theoretical formula is for a noninteracting random coil, our
result of −11.2 J/K/mol is in reasonable agreement with this,
and the remaining difference is to be expected due to the
intrachain interactions in tachyplesin which reduce its entropy
in the non-cross-linked state. Our estimated entropies also
come with the caveat of being derived from sampling a portion
of conformational space reachable within 50 ns from the initial
structure.
Application to BPTI. Definition of Substates. To test

whether our Gaussian mixture method can be used for even
larger systems, we applied it to calculate the entropy difference

between two native substates of the 58-residue bovine
pancreatic trypsin inhibitor. The native-state dynamics has
been characterized in detail by a 1 ms MD simulation,48 and we
used this 1 ms trajectory (courtesy of D. E. Shaw Research) for
our calculations as described in the Methods section. To
visualize the substates of the native state, we performed
principal component analysis on an ensemble of 589 281
frames described by 221 rotatable torsion angles (including
backbone and side-chain torsion angles). Figure 6 shows these

torsion angles projected onto the plane of the first two principal
components. We selected the two distinct sets of points shown
in the figure as substates A and B, and used 85 000 frames from
each subset for entropy calculations.

Calculated Entropy Difference. Entropy calculation by our
Gaussian mixture method was applied to the 116 backbone
torsion angles of the 85 000 frames in each subset selected as
described above. Repeating the calculations 7 times for each
subset, the greedy learning procedure fitted 10 to 14 Gaussian
components onto subset A, and 9 to 12 components onto
subset B. The entropy difference SA − SB was estimated to be
31.8 ± 0.5 J/K/mol. Although we have no way to
independently verify this result, it demonstrates the applic-
ability of the method to similar systems.

Probing the Limits of the Method. We used the 1 ms BPTI
trajectory to test how our method can cope with large samples
of high dimensionality. Thus, we applied the greedy learning
procedure to all 589 281 frames of all 221 torsion angles of the
molecule. The program completed in 57 h of CPU time on an
Intel Xeon E5430 CPU, and fitted 51 Gaussian components
onto the data. The calculated entropy value is not shown as
only entropy differences are physically meaningful.

Scaling of the Gaussian Mixture Method with Sample
Size and Dimensionality. Being a parametric method, the
running time of Gaussian mixture entropy estimation method
depends on the input data: more complex distributions require
more Gaussian components to fit, and therefore run longer.
Therefore, a general formula to estimate the run time for a
given sample cannot be given. The greedy learning procedure
for a k-component mixture on n samples has a time
complexity41 of O(k2n), or O(kmn) if m candidate components
are used in the algorithm and k < m (we used m = 30 in our

Figure 5. Projection of torsion angles from MD simulations of
tachyplesin onto the plane of the first two principal components. Left,
tachyplesin with no disulfide bonds; right, tachyplesin with two
disulfide bonds. The gray dots represent conformations; the black
contour lines represent the Gaussian mixtures fitted onto the samples.

Figure 6. Definition of A and B substates for BPTI from an ensemble
generated by a long MD simulation. All 221 torsion angles were
subjected to principal component analysis and projected to the plane
of the first two principal components. The subsets were defined as the
prominent clusters A and B as shown in the graph.
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implementation). The number of components k is in turn
determined by the cross-validation stopping criterion in our
implementation; thus it depends on the sample size: larger
sample sizes will result in more Gaussian components fitted.
To examine the scaling of the method in more detail, we

generated samples from 10-component Gaussian mixtures with
sample sizes ranging from 1000 to 100,000 and dimensionalities
from 1 to 50. The 10 Gaussian components were standard
normal multivariate distributions with their means shifted to
the position 5n for n = 0, ..., 9; thus, they were well separated
along one axis.
The Gaussian mixture entropy estimation method was

applied to these samples. Figure 7 shows the CPU time

needed by the procedure at various sample sizes n and
dimensionalities d. At fixed dimensionalities, run time increases
roughly linearly with the sample size for small dimensionalities,
but faster than linearly for higher dimensionalities (left graph in
Figure 7). The dependence on the dimensionality at fixed
sample sizes is more complex (right graph in Figure 7), with the
run time first increasing but then dropping again at higher
dimensionalities. These findings are explained by the fact that
the number k of Gaussian components fitted is determined by
the cross-validation stopping criterion. If the number of
dimensions is too high for the given sample size, the stopping
criterion will stop the procedure early; in this case, less than 10
components will be fitted. For example, at a sample size of
10000 in 50 dimensions, only one Gaussian component is fitted
because the sample is too small to enable the reliable
identification of all 10 components in the probability
distribution that was sampled. As sample size increases, more
and more Gaussian components will be fitted. Thus, the
procedure adjusts itself to the available data and only fits as
many components as is possible without overfitting. This
ensures that run times are reasonable even for high-dimensional
data.
Comparison of the Running Time with Other Methods.

We compared the running time of the Gaussian mixture
method with that of the kNN and the 2D entropy methods.
While run times were similar for small samples and low

dimensionalities, both the kNN and the 2D entropy method
required much longer times than our method for large sample
sizes and high dimensionalities. For example, for 100 000
samples in 50 dimensions, the Gaussian mixture method
completed in 1978 s while the kNN method with k = 5 ran for
7790 s, and the 2D entropy method required about 1 day.
However, these running times can probably be improved, for
example, by using a different algorithm for the kNN method
and by less accurate numerical integration for the 2D entropy
method. More importantly, as the run time of our method
depends on the particular distribution while that of the kNN
and 2D entropy methods (being nonparametric methods) does
not, it is not possible to provide a universally valid comparison
of the run times. In our experience, though, the cross-validation
stopping criterion of our method ensures very reasonable
running times in all cases as the program will stop when no
more Gaussian components can be added without overfitting,
the nonparametric methods do not have this favorable
property.

Low-Dimensional Approximations. While our method
easily works with relatively high-dimensional input data, larger
systems with hundreds or thousands of degrees of freedom still
pose a difficult problem. Several approximate methods have
been developed that make use of low-dimensional marginal
distributions of the full probability distribution; these include
mutual information expansion (MIE),13,15,26,28 maximum
information spanning tree (MIST),33 and multibody local
approximation (MLA).18,19 Several studies have suggested that
higher-order correlations may be insignificant for the entropy,
thus low-dimensional approximations may often be sufficiently
accurate.13,15,16 To test how our Gaussian mixture method
works with low-dimensional approximations and to find out
whether these are sufficiently accurate, we calculated three
approximate entropies for our five peptide test systems. Using
the MIE series expansion, the first-order approximation to the
full d-dimensional entropy is simply the sum of one-
dimensional marginal entropies:

∑=
=

S S q( )
i

d

i
(1)

1

where S(qi) is the marginal entropy calculated for the ith
variable qi; the marginal distribution of each variable was
estimated by the Gaussian mixture method. Because the first-
order entropy completely ignores correlations between
variables, we also calculated a corrected first-order approx-
imation as

= −S S I(1c) (1) (qh)

where I(qh) is the quasi-harmonic mutual information as defined
in the Methods section. This corrected first-order entropy fully
accounts for anharmonicities in the individual variables but only
accounts for correlations in the same way as the quasiharmonic
method, that is, it assumes Gaussian joint distributions and it
mostly captures the linear correlations between variables.
The second-order approximation is

∑ ∑= −
=

−

= +

S S I q q( , )
i

d

j i

d

i j
(2) (1)

1

1

1

where I(qi, qj) is the mutual information between variables qi
and qj (see Methods for its definition). For calculating I(qi, qj),
the joint entropy S(qi, qj) was again calculated by the Gaussian

Figure 7. Performance of the Gaussian mixture entropy calculation
method as measured by the CPU time needed to evaluate a sample
generated from a 10-component Gaussian mixture. The sample size n
and the number of variables (dimensions) d were both varied. Left,
CPU time vs sample size for various values of d; right, CPU time vs the
number of dimensions for various values of n.
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mixture method. Thus, obtaining the first-order entropy
requires d one-dimensional entropy calculations, and obtaining
the second-order entropy requires d(d −1)/2 additional two-
dimensional entropy calculations.
Figure 8 presents the comparison of quasiharmonic, first-

order, corrected first-order, and second-order entropy differ-
ences with the full-dimensional calculation for our five peptide
test systems, as a function of sample size. The bottom right
graph shows the deviations from the exact entropy difference
averaged over the five systems. Clearly, the quasiharmonic
approximation is the least accurate, followed by the first-order,
corrected first-order, and second order entropy differences.
This succession shows how entropy estimates become more
and more accurate as anharmonicities, linear correlations, and
supralinear correlations are accounted. We found no significant
difference between the second-order and the full-dimensional
entropy differences. Although we were only able to perform
these comparisons on small molecules (as we need the exact
entropies as a reference), in general we still expect higher
accuracy from the full-dimensional calculation, but if the size of
the system is prohibitively large, the second-order approx-
imation (when calculated by the Gaussian mixture method)
should provide sufficiently accurate results.
It should be noted that unlike some earlier studies,26,38 we

worked with the original coordinates rather than principal-axis
transformed coordinates (i.e., quasiharmonic modes) in our
low-dimensional approximations presented above. The reason
is that principal-axis transformed coordinates are linear
combinations of the original coordinates and therefore their
marginal distributions converge to a normal distribution due to
the central limit theorem. This effect tends to eliminate
anharmonicities, and it can hide much of the complexity of the
probability density function, making the Gaussian mixture-
based density estimation less accurate.

■ DISCUSSION

The Gaussian mixture entropy estimation method is a natural
and conceptually simple extension of the classical quasihar-
monic method as it makes the estimated entropy more accurate
by simply adding more Gaussians to the probability density
estimate. As any smooth function can be approximated by
Gaussian mixtures, the method can naturally model multimodal
and anharmonic distributions even in high-dimensional spaces.
We have shown that the method provides more accurate results
at smaller sample sizes than several other methods described in
the literature, while also being faster than other methods in
most cases. The success of the Gaussian mixture method can be
ascribed to three main causes. First, being a parametric method,
it assumes a particular functional form for the probability
density (namely, a Gaussian mixture). As Gaussian distributions
are associated with harmonic oscillators at constant temper-
ature, it is expected that a Gaussian mixture should be a good
description of the probability density function of a molecular
system. In contrast, nonparametric methods such as the k-
nearest-neighbor method do not assume a particular functional
form, and therefore estimate densities that are distant from the
reality unless the sample size is sufficiently large. Second, the
greedy learning method to estimate Gaussian mixtures is highly
efficient, and allows fast and accurate estimation. Third, the
cross-validation stopping criterion makes the method robust by
ensuring that a sufficient number of Gaussian components are
used in the mixture, but not more components than what the
available data actually justify.
Another advantage of the Gaussian mixture method is the

fact that it is essentially parameter-free. The only user-
adjustable parameters are the number of candidate Gaussians
to test in each step, and the convergence threshold for the
expectation-maximization procedure. However, the algorithm is
not sensitive to the values of these parameters, and the default
values provide good results regardless of the type or size of the
molecular system to be analyzed. In contrast, the value of k in

Figure 8. Similar to Figure 2, but the accuracies of the quasi-harmonic, first-order, corrected first-order, and second-order entropy calculations are
compared. The indicated values are averages from 20 independent calculations.
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the k-nearest neighbor (kNN) method tends to be arbitrary and
its value significantly influences the results (we only showed
results obtained with the best k in Table 2). Similarly, the
entropies calculated by the 2D entropy method strongly
depend on the bandwidth parameter σ, whose value is not
transferable between systems,50 and there is no general rule for
its determination (again, we only showed the results obtained
with the best σ in Table 2). By introducing the cross-validation
stopping criterion, we also eliminated the need for any
arbitrarily adjustable convergence-related parameters.
We have shown that the Gaussian mixture method favorably

compares to several other, state-of-the-art methods. The
methods we used in our comparisons are based on widely
used density estimation methods (kNN and kernel density
estimation), and are relatively easy to implement. There are
many more entropy estimation methods described in the
literature, some of which rather complex (see the Introduc-
tion). Comparing our method with all of them would be
beyond the scope of this article. However, among the methods
that are based on probability density estimation, our method
should be among the best as Gaussian mixtures can
approximate even the most complex probability distributions
to arbitrary accuracy.
The Gaussian mixture method bears some similarity to

methods based on identifying a set of discrete conformations in
local energy minima and assuming harmonic vibrations around
them, applying the quasiharmonic approximation to each
energy minimum.20,35 However, our method does not separate
vibrational and conformational entropy, and does not assume
well-separated harmonic energy basins; the Gaussian mixture
can accurately fit densities from arbitrarily shaped, smooth
energy landscapes, including overlapping and anharmonic
energy basins.
Being a density estimation method, the Gaussian mixture

method could be a good alternative to other, less accurate
density estimation methods in more complex entropy
estimation schemes. This could even allow the incorporation
of quantum mechanical entropies. For example, Numata et al.26

first perform principal component analysis on the mass-
weighted Cartesian coordinates to separate the quantum
mechanical modes from the classical modes, and then use the
kNN method to estimate the density for the classical modes, in
the end obtaining an absolute entropy that includes quantum
mechanical modes.
There has been some discussion in the literature about

whether Cartesian or internal coordinates (or just torsion
angles) are best suited for entropy estimation.4,16,27,33,39 For
large systems such as protein molecules, the high dimension-
ality of the configuration space in Cartesian coordinates poses a
serious problem to all density estimation methods. Using
internal coordinates, and in particular, exploiting the rigid
nature of bond lengths and bond angles to switch to torsion
angles only, is an efficient and physically meaningful way to
reduce the dimensionality of the system. Although the Gaussian
mixture method could in principle deal with Cartesian
coordinates, the number of Gaussian components required to
fit the distributions would be quite high as atoms tend to move
on curved paths which cannot be well approximated with few
Gaussians. Thus, the Gaussian mixture method is best for use
with ensembles of torsion angles.
We have shown that the Gaussian mixture method is

powerful enough to calculate full-dimensional entropies for
large samples in relatively high-dimensional spaces (see the

example of BPTI). However, for even larger systems such as big
proteins, a full-dimensional calculation will not be feasible. We
have shown that low-dimensional approximations such as
mutual information expansion (MIE) can be sufficiently
accurate, and the Gaussian mixture method can be used to
calculate the marginal and joint entropies needed for such
approximations. The Gaussian mixture method could also be
used in combination with other approximation methods based
on series expansions such as maximum information spanning
tree (MIST),33 and multibody local approximation (MLA),18,19

as well as with clustering methods such as identifying minimally
coupled subspaces (MCSA) by full correlation analysis
(FCA).27,28

In addition to providing an entropy estimate, the Gaussian
mixture method also provides an analytical function represent-
ing the probability density function of the system in torsion
angle space. This analytical function only has a limited number
of parameters and is easy to evaluate. Potential applications of
this function include clustering the conformations, identifying
the free energy basins, calculating various ensemble averages,
preparing graphical representations of the free energy landscape
(as in Figure 5), etc.
Though the Gaussian mixture method yields good results

with small sample sizes, we should note that this does not mean
that it can calculate accurate entropies from insufficient samples
resulting from undersampling. The accuracy of any calculated
entropy value critically depends on sampling quality, and no
entropy estimation method can compensate for poor sampling.

■ CONCLUSIONS

The Gaussian mixture method is an accurate and efficient
method to estimate classical entropy differences from
ensembles of molecular conformations. It can calculate full-
dimensional entropies for relatively high dimensionalities, but it
can also be used in combination with approximation methods
(such as mutual information expansion). Because it is
parametric, it is more accurate at smaller sample sizes than
several other density estimation methods, and therefore it is a
powerful alternative to the k-nearest neighbor and kernel
density estimation-based methods. Our implementation of the
Gaussian mixture method is available at http://gmentropy.
szialab.org.
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(16) Li, D.-W.; Brüschweiler, R. In Silico Relationship between
Configurational Entropy and Soft Degrees of Freedom in Proteins and
Peptides. Phys. Rev. Lett. 2009, 102 (11), 118108.
(17) Baxa, M. C.; Haddadian, E. J.; Jha, A. K.; Freed, K. F.; Sosnick,
T. R. Context and Force Field Dependence of the Loss of Protein
Backbone Entropy upon Folding Using Realistic Denatured and
Native State Ensembles. J. Am. Chem. Soc. 2012, 134 (38), 15929−
15936.
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(32) Suaŕez, E.; Díaz, N.; Suaŕez, D. Entropy Calculations of Single
Molecules by Combining the Rigid-Rotor and Harmonic-Oscillator
Approximations with Conformational Entropy Estimations from
Molecular Dynamics Simulations. J. Chem. Theory Comput. 2011, 7
(8), 2638−2653.
(33) King, B. M.; Silver, N. W.; Tidor, B. Efficient Calculation of
Molecular Configurational Entropies Using an Information Theoretic
Approximation. J. Phys. Chem. B 2012, 116 (9), 2891−2904.
(34) Chang, C.-E.; Chen, W.; Gilson, M. K. Evaluating the Accuracy
of the Quasiharmonic Approximation. J. Chem. Theory Comput. 2005,
1 (5), 1017−1028.
(35) Goethe, M.; Fita, I.; Rubi, J. M. Vibrational Entropy of a
Protein: Large Differences between Distinct Conformations. J. Chem.
Theory Comput. 2015, 11 (1), 351−359.
(36) Doig, A. J.; Sternberg, M. J. Side-Chain Conformational Entropy
in Protein Folding. Protein Sci. 1995, 4 (11), 2247−2251.
(37) Zhou, H.-X.; Gilson, M. K. Theory of Free Energy and Entropy
in Noncovalent Binding. Chem. Rev. 2009, 109 (9), 4092−4107.
(38) Baron, R.; Hünenberger, P. H.; McCammon, J. A. Absolute
Single-Molecule Entropies from Quasi-Harmonic Analysis of Micro-
second Molecular Dynamics: Correction Terms and Convergence
Properties. J. Chem. Theory Comput. 2009, 5 (12), 3150−3160.
(39) Cheluvaraja, S.; Meirovitch, H. Simulation Method for
Calculating the Entropy and Free Energy of Peptides and Proteins.
Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (25), 9241−9246.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00837
J. Chem. Theory Comput. 2017, 13, 29−41

40

http://dx.doi.org/10.1021/acs.jctc.6b00837


(40) Cheluvaraja, S.; Meirovitch, H. Calculation of the Entropy and
Free Energy of Peptides by Molecular Dynamics Simulations Using
the Hypothetical Scanning Molecular Dynamics Method. J. Chem.
Phys. 2006, 125 (2), 24905.
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